

ISO 9001:2000 Certified

QUaLITY.

Michigan Wheel Corporation is committed to the pursuit of quality excellence. We have ongoing training for all of our personnel and suppliers. Engineering support is continually upgraded. Through this effort, we seek to continually reduce product and process variation. Michigan Wheel Corporation operates on the philosophy that quality is the cornerstone of economic growth and stability. Therefore, quality is the responsibility of every individual in our organization. With the cooperation and input from our suppliers and customers, we are committed to continuous improvement. Michigan Wheel Corporation is ISO 9001:2000 Certified.

With decades of experience as the Marine Propulsion Industry Leader, the Engineering Department at Michigan Wheel Corporation and select Michigan Distributors have the knowledge and experience to suggest the correct propellers for your boat. Propeller requirements often will change from factory original equipment, dependent on your operating condition. Our Naval Architects, Engineers, and many of our Distributors are available to review your vessel data and your performance expectations. Utilizing specialized proprietary software programs, our staff or our Distributors staff is proficient in determining the best propeller match, in size and style, for your boat's engine and gear ratio combination. See your Michigan Distributor, or contact us directly, to obtain a propeller analysis form.

MANUFAGTURING.

Michigan Propellers has the capacity to CNC machine and hand-craft inboard mono-block, fixed pitch, and variable pitch propellers from $3 "$ through 96 " diameters. The primary certified materials used are Michalloy K (manganese bronze), Michalloy XX (nibral), and Michalloy S (CF3 stainless). Each of these alloys are strictly controlled in composition and purity. With our system of continuous improvement, manufacturing work cells are taking responsibility for propeller quality, from start to finish. Each work center is equipped with certified inspection gauging and balancing equipment, enabling quality to be built in through the process. Production flow is controlled with an ERP computerized program, which is enabling us to provide the levels of lead time flexibility needed to meet our customer's requirements. In addition to the inboard product line, we offer a range of replacement outboard and sterndrive aluminum and stainless propellers, and specialized industrial propellers, each of which has a separate catalog.

HISTORY.

Michigan Wheel was organized in 1903, as a machine shop for the production of a variety of items, including marine propellers. By 1934 the company's main activity was concentrated on the marine propeller field, concentrating on commercial vessel and industrial activity.

Real growth began with the war years, when military requirements demanded the "know-how" that Michigan Wheel had developed. After the war, recreational boating grew by leaps and bounds, and the Michigan Wheel Company was among the leaders in supplying propellers for a growth industry.

Propellers for outboard motors were established in the early 1940's, and a network of propeller distributors and authorized repair stations was established.

In 1949, the Michigan Wheel Company purchased Federal Propellers, uniting the primary suppliers of recreational propellers. With a combined volume of production, Michigan Wheel Company was able to incorporate efficient manufacturing process.

In the 1960's, the Michigan Wheel Company kept pace with the industry in offering propellers for the then new sterndrive propulsion packages.

In the 1970's, the Michigan Wheel Company became the Michigan Wheel Corporation, and entered a period of acquisition to enhance the range of propeller product offered.

In the 1980's, automated finishing equipment for stainless steel propellers, and computer controlled milling machines gained favor, and the Michigan Wheel Corporation was among the first to take advantage of such new technologies. Michigan's CAD-CAM abilities are unsurpassed in the ranks of propeller manufacturers.

With over 10 decades of history, despite several ownership and name changes, despite industry downturns and upturns, the Michigan Wheel Corporation has remained a reliable and dedicated supplier of marine propellers to the recreational and commercial marine industry. Today the Michigan Wheel Corporation offers tens of thousands of variations of propellers, and still retains its leadership position in original equipment and aftermarket propeller supply. The "Michigan" and "Federal" names are recognized and demanded world wide. Much credit goes to its loyal and supportive distributor and builder base, and its own dedicated employees. Our extensive history with marine propulsion has provided the Michigan Wheel Corporation with a solid foundation from which to continue meeting marine industry demands in the future.

Table of Contents

Propeller Guide

Pleasure Boat Propellers Commercial Propellers

Series / Manufacturing . 14-17
Available Propeller Series
Pattern Making and Molding
Propeller Boring and Finishing
Inspection and Crating

Propeller Terms \& Definitions 18-19

Technical \& Data Specifications

Propeller Installation
S.A.E. Propeller Shaft End Dimensions

Pleasure Boat Propellers

Photo courtesy of Silverton Marine Corp.

Photo courtesy of Jefferson Yachts

Photo courtesy of Carver Boat Corp.

Photo courtesy of Cruisers Yachts

Photo courtesy of Chaparral Boats

Photo courtesy of Larson Boats

"X" Series

"DJX" and "DQX" are an evolution of the tried and true Dyna-Jet and Dyna-Quad series propellers. The designs have been modified to be better suited to highly loaded, limited tip clearance applications. All " X " series propellers are CNC machined to facilitate very accurate and repeatable product. The availability of this series will be progressive, with additional sizes being added regularly. Availability will be size specific, in a range of bores, and without or with all degrees of cup.

DQX

0.735 E.A.R.

Diameter range: 17" - 22"
21° of skew

DJX Specifications - (0.61 E.A.R.)											
Diameter		Hub Dimensions (INCHES)			Standard Taper Bore (INCHES)			$\begin{aligned} & \text { MAXIMUM } \\ & \text { BLADE WIDTH } \\ & \text { (INCHES) } \end{aligned}$	ExpANDED AREA PER Blade (SQ. IN)	Approx. Net Weight (LBS.)	$\begin{gathered} { }^{* W R}{ }^{2} \\ \left(\text { LBS. }-\mathrm{IN}^{2}\right) \end{gathered}$
Inches	M / M	Aft End	Forward End	Length	Minimum Bore	MAXIMum Bore	Pilot Bore				
12	305	1-5/8	1-3/4	2-3/8	7/8	1-1/8	7/8	5-7/16	22.7	5	41
13	330	1-5/8	1-7/8	2-3/4	7/8	1-1/8	$7 / 8$	6	26.8	6	61
14	356	1-7/8	2	2-3/4	1	1-1/4	1	6-1/2	31	8	90
15	381	1-7/8	2	2-3/4	1	1-1/4	1	6-7/8	35.8	10	126
16	406	2-1/8	2-3/8	3-1/4	1-1/8	1-1/2	1-1/8	7-3/8	40.5	12	172
17	432	2-1/4	2-1/2	3-1/4	1-1/4	1-1/2	1-1/4	7-7/8	45.4	14	232
18	457	2-3/8	2-5/8	3-3/4	1-1/4	1-3/4	1-1/4	8-5/16	51.3	16	307
19	483	2-3/8	2-5/8	3-3/4	1-1/4	1-3/4	1-1/4	8-3/4	57.3	19	401
20	508	2-3/8	2-5/8	3-3/4	1-1/4	2	1-1/4	9-1/4	63.8	21	516
21	533	2-3/4	3	4-1/8	1-3/8	2	1-3/8	9-3/4	69.9	26	660
22	559	2-3/4	3	4-1/8	1-3/8	2	1-3/8	10-3/16	76.2	28	828
23	584	3	3-1/4	4-1/2	1-1/2	2	1-1/2	10-5/8	83.8	33	1,035
24	610	3	3-1/4	4-1/2	1-1/2	2	1-1/2	11-1/16	91.6	37	1,275
26	660	3-1/2	3-7/8	5	1-3/4	2-1/4	1-3/4	12-1/16	107.0	47	1,875
28	711	3-7/8	4-3/8	5-3/4	2	2-1/2	2	12-15/16	123.7	61	2,718

${ }^{*} W R^{2}= \pm 10 \%$ in Air (inch squared Ibs.)
M.W.R. $=0.37$
B.T.F. $=0.048$

DQX Specifications - (0.735 E.A.R.)

Diameter		Hub Dimensions (INCHES)			Standard Taper Bore (INCHES)			$\begin{aligned} & \text { MAXIMUM } \\ & \text { BLADE WIDTH } \\ & \text { (INCHES) } \end{aligned}$	ExpANDED AREA PER Blade (SQ. IN)	Approx. Net Weight (LBS.)	$\begin{gathered} \text { *WR }{ }^{2} \\ \left(\text { LBS. }-\mathrm{IN}^{2}\right) \end{gathered}$
INCHES	MM / M	AFT End	Forward End	Length	Minimum Bore	Maximum Bore	Pilot Bore				
17	432	2-1/4	2-1/2	3-1/4	1-1/4	1-1/2	1-1/4	7-3/16	41.4	16	279
18	457	2-3/8	2-5/8	3-1/4	1-1/4	1-3/4	1-1/4	7-5/8	46.4	18	370
19	483	2-3/8	2-5/8	3-3/4	1-1/4	1-3/4	1-1/4	8	51.9	21	482
20	508	2-3/8	2-5/8	3-3/4	1-1/4	1-3/4	1-1/4	8-7/16	57.7	24	621
21	533	2-3/4	3	4-1/8	1-3/8	2	1-3/8	8-7/8	63.2	29	794
22	559	2-3/4	3	4-1/8	1-3/8	2	1-3/8	9-5/16	69.6	33	997
$* W R^{2}= \pm 10$	(inch squ		M.W.R. =		$=0.046$						

DQX Specifications - (0.81 E.A.R.)

DIAMETER		Hub Dimensions (INCHES)			Standard Taper Bore (INCHES)			$\begin{aligned} & \text { MAAXIMUM } \\ & \text { BLADE WIDTH } \\ & \text { (INCHES) } \end{aligned}$	Expanded AREA PER Blade (SQ. IN)	Approx. Net Weight (LBS.)	$\begin{gathered} { }^{* W R^{2}} \\ \left(\mathrm{LBS} .-\mathrm{N}^{2}\right) \end{gathered}$
InCHES	MM / M	AFT End	Forward End	Length	Minimum Bore	MAXImum Bore	Pilot Bore				
23	406	3	3-1/4	Full Taper	1-1/2	2	1-1/2	10-5/8	83.7	45	1,392
24	432	3	3-1/4	Full Taper	1-1/2	2	1-1/2	11-1/16	91.4	50	1,714
25	457	3-3/8	3-3/4	Full Taper	1-3/4	2-1/4	1-3/4	11-9/16	98.6	60	2,111
26	483	3-3/8	3-3/4	Full Taper	1-3/4	2-1/4	1-3/4	12	106.9	65	2,557
27	508	3-3/4	4-1/8	Full Taper	2	2-1/2	2	12-1/2	114.8	77	3,099
28	533	3-3/4	4-1/8	Full Taper	2	2-1/2	2	12-15/16	123.8	83	3,700
30	559	4-1/4	4-5/8	Full Taper	2	3	2	13-7/8	141.5	110	5,240
32	584	4-1/4	4-5/8	Full Taper	2	3	2	14-3/4	161.8	126	7,176

[^0]
Pleasure Boat Propellers

Photo courtesy of Sea Vee Corporation

Photo courtesy of Sport Craft Marine

Photo courtesy of Gibson Fiberglass Products, Inc.

Photo courtesy of Custom Steel Yachts

Photo courtesy of TPI Composites, Inc.

Photo courtesy of Carver Yachts

Dyna-Jet

Dyna-Quad

M-500
0.56 E.A.R. Diameter range: 19" - 46" Pitch range: 0.7-1.1 dia/pitch ratio

The 3-blade Dyna-Jet is the most popular propeller in the world for moderate size boats, generally through 40^{\prime}, providing outstanding speed and performance. Designed for both the hard working fishing boats to get to their destination on time, to the pleasure craft owner who looks for the ultimate performance and speed. The Dyna-Jet pushes it to the limit.

Each Dyna-Jet propeller is carefully hand crafted and inspected to meet today's performance demands. When using NiBrAl material, a cupped trailing edge is available for maximizing thrust and minimizing vibration of a cavitating propeller where blade loading is at the upper end.

0.69 E.A.R.

Diameter range: 19" - 46"

Pitch range: 0.7-1.1 dia/pitch ratio

The Dyna-Quad design is as popular as the three blade Dyna-Jet, but generally suggested for vessels larger than 40 ' requiring greater blade area due to the added weight and thrust requirements. The four blade design gives extreme smoothness, superb maneuverability, plus the speed and "dig" of a three blade.

In addition, if slight vibration is present with a 3 blade, the added blade in the Dyna-Quad may offer a more comfortable ride reducing that vibration. This is also an excellent choice for the performance minded commercial boat operators. Like the three blade Dyna-Jet, all Dyna-Quads in NiBrAl material are available with cupped trailing edges.

0.86 E.A.R. Diameter range: 22" - 44" Pitch range: 0.75-1.3 dia/pitch ratio

The M-500 is selected by many operators for new boat construction, re-powers and upgrading of propellers. The excellent design and increased blade area provides superior and higher performance without increasing propeller diameter, which may be impossible due to clearance or tip speed consideration. The M-500 is the top choice on installations where heavy vee-struts, dead wood or other hull appendages are agitating the water flow to the propeller. In addition, the $\mathbf{M}-500$ is the choice where vibration caused by resonance is a problem. The blade design reduces vibration caused by the propeller, achieving smoother and quiet cruising.

Available in NiBrAl (Nickel, Bronze, Aluminum) \& Manganese Bronze. Also available cupped.

Dyna-Jet \& Dyna-Quad Specifications								Dyna-Jet - (0.56 E.A.R.)				Dyna-Quad - (0.69 E.A.R.)			
			MENSIONS (1)	CHES)	Standar	Taper Bor	NCHES)	Maximum BLADE	Expanded AREA PER	Approx. NEt		Maximum Blade	Expanded Area per	APPROX. Net	
Inches	MM / M	$\begin{aligned} & \text { AFT } \\ & \text { End } \end{aligned}$	Forward End	Length	Minimum Bore	Maximum Bore	Pilot Bore	WIDTH (INCHES)	$\begin{aligned} & \text { BLADE } \\ & \text { (SQ. IN) } \end{aligned}$	Weight (LBS.)	*WR ${ }^{2}$	WIDTH (INCHES)	$\begin{aligned} & \text { BLADE } \\ & \text { (SQ. IN) } \end{aligned}$	WEicht (LBS.)	$\begin{gathered} { }^{* W R}{ }^{2} \\ \left(\text { LBS.-IN }{ }^{2}\right) \end{gathered}$
9	229	1-3/8	1-1/2	2-1/8	3/4	7/8	3/4	3-7/8	11.7	2.5	10	-	-	-	-
10	254	1-1/2	1-5/8	2-1/4	3/4	1	3/4	4-5/16	14.5	3	17	-	-	-	-
11	279	1-1/2	1-5/8	2-1/4	3/4	1	3/4	4-3/4	17.7	4	26	-	-	-	-
12	305	1-5/8	1-3/4	2-3/8	$7 / 8$	1-1/8	7/8	5-3/16	21.1	5	40	-	-	-	-
13	330	1-5/8	1-13/16	2-3/4	1	1-1/4	1	5-5/8	24.8	6	60	-	-	-	-
14	356	1-7/8	2	2-3/4	1	1-1/4	1	6	28.7	8	86	-	-	-	-
15	381	1-7/8	2	2-3/4	1	1-1/4	1	6-7/16	33.1	9	120	-	-	-	-
16	406	2-1/8	2-3/8	3-1/4	1-1/8	1-3/8	1-1/8	6-7/8	37.5	11	167	-	-	-	-
17	432	2-1/8	2-3/8	3-1/4	1-1/4	1-3/8	1-1/4	7-5/16	42.8	13	224	6-3/4	38.7	14	257
17**	432	2-3/8	2-5/8	3-3/4	1-1/4	1-1/2	1-1/4	7-5/16	42.8	13	224	-	-	-	-
18	457	2-3/8	2-5/8	3-1/4	1-1/4	1-1/2	1-1/4	7-3/4	47.4	16	298	7-1/8	43.2	17	341
19	483	2-3/8	2-5/8	3-3/4	1-1/4	1-1/2	1-1/4	8-3/16	53.1	18	388	7-1/2	48.3	20	445
20	508	2-3/8	2-5/8	3-3/4	1-1/4	1-1/2	1-1/4	8-5/8	59.0	20	500	7-15/16	53.7	23	573
21	533	2-3/4	3	4-1/8	1-3/8	1-3/4	1-3/8	9-1/16	64.6	25	640	8-5/16	58.8	28	733
22	559	2-3/4	3	4-1/8	1-3/8	1-3/4	1-3/8	9-1/2	71.2	28	803	8-11/16	64.8	31	920
23	584	3	3-1/4	4-1/2	1-1/2	2	1-1/2	9-7/8	77.6	33	1,004	9-1/16	70.6	36	1,150
24	610	3	3-1/4	4-1/2	1-1/2	2	1-1/2	10-3/8	84.7	36	1,237	9-1/2	77.1	40	1,216
26	660	3-3/8	3-3/4	4-7/8	1-3/4	2-1/4	1-3/4	11-1/4	99.1	46	1,844	10-1/4	90.2	52	2,110
28	711	3-3/4	4-1/8	5-3/4	2	2-1/2	2	12-1/16	114.7	60	2,671	11-1/16	104.4	66	3,056
30	762	4-1/4	4-5/8	6	2	3	2	12-15/16	131.1	76	3,775	11-7/8	119.3	84	4,316
32	813	4-1/4	4-5/8	6	2	3	2	13-3/4	150.0	88	5,172	12-5/8	136.5	97	5,917
34	864	4-1/4	4-5/8	6-1/2	2-1/4	3	2-1/4	14-5/8	170.0	101	6,973	13-7/16	154.7	112	7,978
36	914	4-5/8	5-1/8	8	2-3/4	3-1/2	2-3/4	15-1/2	190.1	124	9,289	14-1/4	173.0	138	10,622
38	965	4-5/8	5-1/8	8	2-3/4	3-1/2	2-3/4	16-3/8	212.7	140	12,108	15	193.5	156	13,851
40	1016	5	5-1/2	9	3	3-3/4	3	17-1/4	235.3	168	15,646	15-13/16	214.1	186	17,892
42	1067	5-3/8	6	10-7/16	3	4	3	18-1/8	258.8	205	20,016	16-5/8	235.5	226	22,878
44	1118	5-7/16	6-3/16	11	3	4	3	19	284.5	233	25,187	13-3/8	258.9	258	28,790
46	1168	5-5/8	6-1/4	11-7/8	3	4	3	19-7/8	311.5	266	31,385	18-3/16	283.5	293	35,376

** Sizes (Dia. x Pitch) $17 \times 16,17 \times 17, \& 17 \times 18$ maximum bore is $1-1 / 2^{\prime \prime}$. All other $17^{\prime \prime}$ dia. x available pitch - maximum bore is $1-3 / 8^{\prime \prime}$. See hub dimensions for hub size detail. *WR ${ }^{2}= \pm 10 \%$ in Air (inch squared lbs.)

```
For Dyna Jet M.W.R. \(=0.33 \quad\) B.T.F. \(=0.050\)
```

For Dyna-Quad M.W.R. $=0.33$ B.T.F. $=0.047$

Pleasure Boat Propellers

Mud Boat Propellers

2 Blade Weedless A-C, W-C, H-D are designed for efficient, durable performance in weedinfested waters.

Weedless A-C

2 Blade Weedless A-C, W-C, H-D are designed for efficient, durable performance in weed-infested waters.

The A-C series is primarily for smaller air-cooled inboard engines. Diameters range from 6" to 10" with straight bores.

The W-C series offer heavier blades and a larger hub for water cooled engines. Diameters range from $6 "$ to 10 " with tapered bores.

The Weedless H-D series (heavy duty) is designed for maximum strength and durability in weed infested waters. It is designed to take on the heaviest of weeds. Diameters range from 10" to 16 ", with standard taper bores.

All 2 Blade Weedless propellers are Available in NiBrAl or Manganese Bronze.

Weedless H-D

Weedless A-C Specifications										
DIAMETER		Available Рітсн	Hub Dimensions (INCHES)			MAXIMUM Straight Bore (INCHES)	$\begin{aligned} & \text { MAXIMUM } \\ & \text { BLADE WIDTH } \\ & \text { (INCHES) } \end{aligned}$	Expanded Area per Blade (SQ. IN)	Approx. Net Weicht (LBS.)	B.T.F.
Inches	MM / M		$\begin{aligned} & \text { Aft } \\ & \text { END } \end{aligned}$	Forward End	Length					
6	152		1	1-11/32	1-3/8	1/2	2-5/8	6.2	1	. 042
7	178	4L	1-1/16	1-1/2	1-1/2	5/8	3-1/8	8.5	1.5	. 042
8	203	6L	1-1/8	1-1/2	1-1/2	5/8	3-9/16	10.8	2	. 042
9	229	6L, 7L, 8L	1-1/4	1-11/16	1-7/8	3/4	4-1/8	13.7	3	. 042
10	254	6L, 10L	1-7/16	1-3/4	2-1/4	3/4	4-11/16	14.7	3.5	. 042

Weedless W-C Specifications

Weedless W-C Specifications										
DIAmeter		Avallable Рitch	Hub Dimensions (INCHES)			MAXIMUM Straight Bore (INCHES)	MAXIMUM Blade Width (INCHES)	ExpANDED AREA PER Blade (SQ. IN)	Approx. Net Weight (LBS.)	B.T.F.
Inches	M / M		$\begin{aligned} & \text { Aft } \\ & \text { End } \end{aligned}$	Forward End	Length					
6	152	4L, 5L	1	1-11/32	1-3/8	1/2" straight no keyway	2-5/8	6.2	1	. 042
7	178	4L, 5L, 8L, 10L	1-1/16	1-1/2	1-1/2	1/2" straight no keyway	3-1/8	8.5	1.5	. 042
8	203	4L, 5L	1-1/8	1-1/2	1-1/2	5/8" straight no keyway	3-9/16	10.8	2	. 042
9	229	5L, 6L	1-1/4	1-11/16	1-7/8	$5 / 8$ " or $3 / 4$ " straight \& slot	4-1/8	13.7	3	. 042
10	254	5L, 9L	1-7/16	1-3/4	2-1/4	or 3/4" taper \& keyway	4-11/16	14.7	3.5	. 042

Weedless H-D Specifications											
DIAMETER		Avallable Рitch	Hub Dimensions (INCHES)			Maximum Standard Taper Bore (INCHES)	Maximum Straight Bore (INCHES)	Maximum Blade Width (INCHES)	ExpANDED AREA PER BLADE(SQ. IN)	Approx. Net WEight (LBS.)	B.T.F.
Inches	M / M		$\begin{aligned} & \text { Aft } \\ & \text { End } \end{aligned}$	Forward End	Length						
10	254	6R, 8, 10, 12	1-7/16	1-5/8	2-1/4	1	1	6-11/16	21	5	. 058
11	279	8, 10, 12	1-7/16	1-5/8	2-1/4	1	1	7-7/16	25	6	. 058
12	305	10, 12, 14	1-9/16	1-3/4	5-5/8	1-1/8	1-1/4	8	30	7.5	. 058
13	330	8, 10, 12, 14	1-9/16	1-3/4	2-5/8	1-1/8	1-1/4	8-13/16	36	9	. 058
14	356	8, 10, 12L, 14, 16	1-3/4	2	3	1-1/8	1-1/4	9-7/16	41	12	. 058
15	381	8, 10, 12, 13L, 14, 16	1-3/4	2	3	1-1/8	1-1/4	10	47	14	. 058
16	406	8-16 Even	1-15/16	2-3/16	3-3/8	1-1/4	1-3/8	10-11/16	55	16	. 058

Similar designs, along with Michigan MP-Style, are utilized in industrial applications for mixing and aeration. The primary material is stainless steel.

For Stainless Steel 2 and 3-blade weedless propellers, contact Michigan Wheel Division, Quality Castings at 1-866-664-5443.

Pleasure/Commercial Boat Propellers

Photo courtesy of Skipperliner Industries, Inc.

Photo courtesy of Marine Transportation Services

Photo courtesy of Marine Transportation Services

Photo courtesy of Gulf Craft, Inc.

DQ Special

0.76-0.91 E.A.R.

Diameter range: 32"-56"
More muscle than the traditional Dyna-Quad design through more blade area. The DQ Special is an authoritative extension of the tried and true Dyna-Quad design. This series is available in larger diameters, with area ratios suitable for today's high powered vessels. The DQ Special is an option for large superyachts as well as commercial boats operating at speed.

Available in NiBrAl or Manganese Bronze alloys.

Commercial Boat Propellers

Dura-Quad

0.76 E.A.R.
Diameter range: 24"-36"

The Dura-Quad is the choice for applications where more durability is desired and/or more blade area is required. The Dura-Quad series features the skewed and highly efficient blade design of the traditional Dyna-Quad series, with added blade thickness to optimize speed on high powered commercial applications, without sacrificing durability.

Available in NiBrAl or Manganese Bronze.

Pac-Master

0.69 E.A.R.

Even Diameters: 20" - 30"
Designed for maximum durability, the Pac-Master stainless steel series insures long-life running without giving up performance. Modeled from our popular Dyna-Quad pleasure series, this series provides smooth and efficient operation. The increased blade root thickness gives the Pac-Master series the extra durability for all commercial applications. Corrosion resistant CF3 Stainless Steel alloy is used to insure rugged, dependable operation. The Pac-Master keeps the work moving in the toughest conditions.

All Pac-Masters are available in select even diameters. Odd diameters and pitch combinations are also available upon request.

Available only in CF3 Stainless Steel alloy.

DQ Special Specifications - (0.86 E.A.R.)											
Diameter		Hub Dimensions (INCHES)			Standard Taper Bore (INCHES)			MAXIMUM Blade Width (INCHES)	EXPANDED AREA PER Blade (SQ. IN)	Approx. Net Weight (LBS.)	$\begin{gathered} { }^{* W R}{ }^{2} \\ \left(\text { LBS. }-\mathrm{IN}^{2}\right) \end{gathered}$
Inches	M / M	$\begin{aligned} & \text { Aft } \\ & \text { End } \end{aligned}$	Forward End	Length	Minimum Bore	Maximum Bore	Pilot Bore				
32	813	4-1/4	4-7/8	full taper	2	3	2	15-11/16	173.1	128	8,250
34	864	4-1/2	5-1/8	full taper	2-1/4	3	2-1/4	16-11/16	196.3	152	11,150
36	914	4-7/8	5-9/16	full taper	2-3/4	3-1/2	2-3/4	17-11/16	219.5	184	14,850
38	965	4-7/8	5-9/16	full taper	2-3/4	3-1/2	2-3/4	18-5/8	245.5	207	19,270
40	1,016	4-7/8	5-11/16	full taper	3	3-3/4	3	19-5/8	271.6	233	24,710
42	1,067	5-3/8	6	full taper	3	4	3	20-5/8	298.8	275	31,620
44	1,118	5-3/8	6	full taper	3	4-1/4	3	21-9/16	328.5	300	39,630
46	1,168	6	6-3/4	full taper	3	4-1/2	3	22-9/16	359.6	352	46,690
48	1,219	6	6-3/4	full taper	3	4-1/2	3	23-3/8	387.5	390	61,190
50	1,270	6-3/4	7-1/2	full taper	3	5	3	24-7/16	420.5	460	75,570
52	1,321	6-3/4	7-1/2	full taper	3	5	3	25-7/16	456.2	505	91,460
54	1,372	6-3/4	7-1/2	full taper	3	5	3	26-7/16	493.3	552	109,740
56	1,422	6-3/4	7-1/2	full taper	3	5	3	27-3/8	531.9	604	131,130

*WR ${ }^{2}= \pm 10 \%$ in Air (inch squared Ibs.) Notes: 1. Mass moment of inertia properties calculated using minimum standard bore.
2. Mass moment of inertia properties calculated using bronze.
3. Some DQ Specials have blade area other than 0.86 .

Dura-Quad Specifications - (0.76 E.A.R.)												
Dameter		Hub Dimensions (NCHES)			Standard Taper Bore (INCHES)				$\begin{aligned} & \text { MAXIMUM } \\ & \text { BLADE WIDTH } \\ & \text { (INCHES) } \end{aligned}$	ExpANDED AREA PER BLADE (SQ. IN)	Approx. Net Weight (LBS.)	$\begin{gathered} { }^{*} \mathrm{WR}^{2} \\ \left(\mathrm{LBS} .-\mathbb{N}^{2}\right) \end{gathered}$
InCHES	Mм / M	$\begin{aligned} & \text { AFT } \\ & \text { END } \end{aligned}$	Forward End	Length	Minimum Bore	Maximum BORE	$\begin{aligned} & \hline \text { PILOT } \\ & \text { BORE } \end{aligned}$	Pilot S.E. Diameter				
24	610	3	3-3/8	6	1-1/2	2	1-1/2	1.172	10-7/16	85.5	52	1,780
26	660	3-3/8	3-7/8	6-3/4	1-3/4	2-1/4	1-3/4	1.375	11-5/16	99.9	67	2,650
28	711	3-3/4	4-1/4	7-1/2	2	2-1/2	2	1.578	12-3/16	115.7	85	3,830
30	762	4-1/4	4-7/8	9	2	3	2	1.531	13-1/16	132.1	113	5,420
32	813	4-1/4	4-7/8	9	2	3	2	1.531	13-15/16	151.1	129	7,420
34	864	4-1/4	4-7/8	9	2	3	2	1.531	14-13/16	171.4	148	9,980
36	914	4-5/8	5-1/4	10-1/2	2-3/4	3-1/2	2-3/4	2.164	15-5/8	191.8	176	13,260

*WR ${ }^{2}= \pm 10 \%$ in Air (inch squared lbs.)

Pac-Master Specifications- (0.69 E.A.R.)

DIAMETER		Hub Dimensions (INCHES)			Standard Taper Bore (INCHES)			$\begin{aligned} & \text { Maximum } \\ & \text { Blade Width } \\ & \text { (INCHES) } \end{aligned}$	Expanded AREA PER Blade (SQ. IN)	Approx. Net Weight (LBS.)	$\begin{gathered} { }^{* W R}{ }^{2} \\ \left(\mathrm{LBS} .-\mathrm{IN}^{2}\right) \end{gathered}$
Inches	Rotation	$\begin{aligned} & \text { AFT } \\ & \text { END } \end{aligned}$	Forward End	Length	Minimum Bore	Maximum Bore	Pilot Bore				
20×18	R	2-3/4	3	4-1/2	1-1/2	1-3/4	1-1/2	8-1/16	54.2	26	627
20×20	R	2-3/4	3	4-1/2	1-1/2	1-3/4	1-1/2	8-1/16	54.2	26	627
22×18	R	3	3-1/4	4-7/8	1-3/4	2	1-3/4	8-7/8	65.5	34	1,003
22×20	R	3	3-1/4	4-7/8	1-3/4	2	1-3/4	8-7/8	65.5	34	1,003
22×22	R	3	3-1/4	4-7/8	1-3/4	2	1-3/4	8-7/8	65.5	34	1,003
24×20	R \& L	3-3/8	3-3/4	5-3/4	2	2-1/4	2	9-11/16	77.8	46	1,545
24×22	R \& L	3-3/8	3-3/4	5-3/4	2	2-1/4	2	9-11/16	77.8	46	1,545
24×24	R \& L	3-3/8	3-3/4	5-3/4	2	2-1/4	2	9-11/16	77.8	46	1,545
26×20	R \& L	3-7/8	4-1/4	6	2	2-1/2	2	10-1/2	90.9	61	2,302
26×22	R \& L	3-7/8	4-1/4	6	2	2-1/2	2	10-1/2	90.9	61	2,302
26×24	R \& L	3-7/8	4-1/4	6	2	2-1/2	2	10-1/2	90.9	61	2,302
26×26	R \& L	3-7/8	4-1/4	6	2	2-1/2	2	10-1/2	90.9	61	2,302
26×30	R \& L	3-7/8	4-1/4	6	2	2-1/2	2	10-1/2	90.9	61	2,302
28×26	R \& L	3-7/8	4-1/4	6	2	2-1/2	3	11-1/4	106.2	72	3,303
28×28	R \& L	3-7/8	4-1/4	6	2	2-1/2	3	11-1/4	106.2	72	3,303
30×20	R	3-7/8	4-1/4	6-1/2	2	2-1/2	3	12-1/16	122.5	85	4,633
30×28	R \& L	3-7/8	4-1/4	6-1/2	2	2-1/2	3	12-1/16	122.5	85	4,633
30×30	R	3-7/8	4-1/4	6-1/2	2	2-1/2	3	12-1/16	122.5	85	4,633

$* \mathrm{WR}^{2}= \pm 10 \%$ in Air (inch squared lbs.)
M.W.R. $=0.326$
B.T.F. $=0.060$

Odd diameter \& pitch within 2 " of listed are quoted on request.

Commercial Boat Propellers

Photo courtesy of Marine Inland Fabricators

Photo courtesy of Marine Inland Fabricators

Photo courtesy of Gulf Craft, Inc.

Machine Pitch
 Machine Pitch (MP)/Heavy Duty (HD)

0.51 E.A.R. - Diameter range: 8" - 60"
0.47 E.A.R. - Diameter range: 62" - 96"

Machine Pitch ${ }^{\text {TM }}$ (MP) is the finest and best known 3 blade for all-purpose use. The style and design is primarily used on vessels with speeds less than 15 knots. MP style propellers incorporate a semi-elliptical shape, constant pitch and ogival blade sections.

The Heavy Duty (HD) is identical in design to the MP, but includes thicker blade edges engineered specifically for severe conditions. Its heavy duty edges resist abrasion and blade fracture.

Available in NiBrAl, Manganese Bronze or Stainless Steel alloys.

Work Horse

0.71 E.A.R. - Diameter range: 24" - 60"
0.622 E.A.R. - Diameter range: 62" - 96"

The Work Horse ${ }^{\mathrm{TM}}$ is the best known commercial four blade propeller in the world for its ability to push hard working boats. It is designed for tug boats, push boats, and applications requiring maximum thrust - where low speeds do not necessitate skewed blades. The semi-elliptical blade shape and constant pitch allows for excellent reverse thrust performance that is necessary in many work boat applications.

When it is time to work, the Work Horse delivers.
Available with 4 or 5 blade design, in NiBrAl, Manganese Bronze or Stainless steel alloys.

Work Horse 5

0.8875 E.A.R. - Diameter range: 30" - 60"

Machine Pitch \& Work Horse Specifications										Machine Pitch		Work Horse 4		Work Hose 5	
			$\begin{aligned} & \text { UB DIMENSION } \\ & \text { (INCHES) } \end{aligned}$			ard Taper (INCHES)		Maximum Blade	Expanded Area per	Approx. Net		Approx. Net		APPROX. Net	
Inches	MM / M	$\begin{aligned} & \text { AFT } \\ & \text { END } \end{aligned}$	$\begin{gathered} \text { FORWARD } \\ \text { END } \end{gathered}$	Length	Minimum Bore	Maximum Bore	Pilot Bore	WIDTH (INCHES)	Blade (SQ. IN)	Weight (LBS.)	*WR ${ }^{2}$	Weight (LBS.)	*WR ${ }^{2}$	Weight (LBS.)	$\begin{gathered} { }^{* W R^{2}} \\ \left(\mathrm{LBS} .-\mathbb{N}^{2}\right) \end{gathered}$
9	229	1-5/16	1-7/16	2-1/8	3/4	3/4	3/4	3-7/8	11.8	2.5	13	-	-	-	-
10	254	1-7/16	1-5/8	2-1/8	3/4	7/8	3/4	4-5/16	14.5	3.5	21	-	-	-	-
11	279	1-7/16	1-5/8	2-1/8	3/4	7/8	3/4	4-5/8	17.6	4	34	-	-	-	-
12	305	1-9/16	1-3/4	2-5/8	7/8	1-1/8	$7 / 8$	5-1/16	20.9	5	50	-	-	-	-
13	330	1-9/16	1-3/4	2-3/4	1	1-1/8	1	4-15/16	22.7	6	65	-	-	-	-
14	356	1-3/4	2	3	1	1-1/8	1	5-5/16	26.4	8	90	-	-	-	-
15	381	1-3/4	2	3	1	1-1/8	1	5-5/8	30.3	9	120	-	-	-	-
16	406	1-15/16	2-3/16	3-3/8	1-1/8	1-1/4	1-1/8	6-15/16	34.5	11	160	-	-	-	-
17	432	2	2-5/16	3-3/8	1-1/8	1-3/8	1-1/8	6-7/16	38.9	12	210	-	-	-	-
18	457	2	2-5/16	3-3/8	1-1/8	1-3/8	1-1/8	6-7/8	43.6	14	280	17	-	-	-
19	483	2-1/8	2-7/16	3-3/4	1-1/4	1-3/8	1-1/4	7-1/4	48.6	16	350	20	-	-	-
20	508	2-1/8	2-7/16	3-3/4	1-1/4	1-3/8	1-1/4	7-1/2	53.8	18	470	23	-	-	-
21	533	2-7/16	2-13/16	4-1/8	1-3/8	1-1/2	1-3/8	8	59.4	22	590	28	-	-	-
22	559	2-7/16	2-13/16	4-1/8	1-3/8	1-1/2	1-3/8	8-3/8	65.1	25	760	32	-	-	-
23	584	2-13/16	3-3/16	4-1/2	1-1/2	1-3/4	1-1/2	8-7/8	71.2	30	940	38	-	-	-
24	610	2-13/16	3-3/16	4-1/2	1-1/2	1-3/4	1-1/2	9-1/8	77.5	33	1,140	41	-	-	-
26	660	3-3/16	3-5/8	5-1/4	1-3/4	2	1-3/4	9-7/8	91	44	1,710	54	-	-	-
28	711	3-1/2	4	5-1/4	1-3/4	2-1/4	1-3/4	10-5/8	105.5	55	2,490	68	-	-	-
30	762	3-13/16	4-3/8	6	2	2-1/2	2	11-3/8	124.7	70	3,460	87	4,590	108	6,100
32	813	4-1/4	4-13/16	6	2	3	2	12-3/16	141.8	97	5,960	121	7,920	150	10,526
34	864	4-7/16	5-1/16	6-3/4	2-1/4	3-1/4	2-1/4	12-7/8	160.1	114	7,810	142	10,380	177	13,795
36	914	4-3/4	5-1/2	7	2-1/2	3-1/2	2-1/2	13-5/8	179.5	136	10,350	170	13,750	211	18,274
38	965	5-1/16	5-13/16	7-1/4	2-1/2	3-3/4	2-1/2	14-7/16	200	159	13,200	198	17,540	246	23,311
40	1016	5-1/16	5-13/16	7-3/4	2-3/4	3-3/4	2-3/4	15-3/16	221.6	177	16,600	221	22,070	275	29,331
42	1067	5-1/4	6	8	2-3/4	3-3/4	2-3/4	15-15/16	244.3	211	22,620	265	30,090	329	39,990
44	1118	5-1/4	6	8	2-3/4	3-3/4	2-3/4	16-3/4	268.1	232	27,820	293	37,010	364	49,186
46	1168	6	6-3/4	10	3	4	3	17-7/16	293.1	285	34,170	354	45,400	440	60,337
48	1219	6	6-3/4	10	3	4	3	18-1/4	319.1	309	41,290	386	54,900	480	72,962
50	1.27	6-9/16	7-3/8	10-3/4	3	4-1/2	3	19	346.2	362	49,820	447	66,190	556	87,967
52	1.32	6-9/16	7-3/8	10-3/4	3	4-1/2	3	19-3/4	374.5	390	59,370	485	78,900	603	104,858
54	1.37	6-9/16	7-3/8	10-3/4	3	4-1/2	3	20-1/2	408.8	420	70,320	526	93,510	654	124,275
56	1.42	7-5/8	8-3/8	11-1/2	3-1/4	5	3-1/4	21-1/4	434.3	498	83,470	615	110,830	764	147,293
58	1.47	7-5/8	8-3/8	11-1/2	3-1/4	5	3-1/4	21-7/8	465.9	533	97,700	661	129,810	822	172,517
60	1.52	7-5/8	8-3/8	12	3-1/2	5	3-1/2	22-3/4	498.6	572	113,880	713	151,360	886	201,157
62	1.57	9	10	13-1/4	4	6	4	22-1/2	492.8	737	143,870	902	190,790	-	-
64	1.63	9	10	13-1/4	4	6	4	23-1/8	525.1	781	165,830	961	220,060	-	-
66	1.68	9	10	13-1/4	4	6	4	23-15/16	558.4	828	190,420	1,024	252,850	-	-
68	1.73	10-1/2	11-3/4	14-1/2	5	7	5	24-5/8	592.8	987	221,140	1,199	292,710	-	-
70	1.78	10-1/2	11-3/4	14-1/2	5	7	5	25-3/8	628.1	1,039	251,690	1,269	333,450	-	-
72	1.83	10-1/2	11-3/4	14-1/2	5	7	5	26-1/8	664.5	1,094	285,590	1,342	378,650	-	-
74	1.88	10-1/2	11-3/4	14-1/2	6	7	6	26-7/8	702	1,159	340,800	1,436	452,320	-	-
76	1.93	10-1/2	11-3/4	14-1/2	6	7	6	27-9/16	740.4	1,228	388,680	1,529	516,160	-	-
78	1.98	10-1/2	11-3/4	14-1/2	6	7	6	28-1/4	779.9	1,301	441,530	1,626	586,630	-	-
80	2.03	11-1/8	12-1/2	17	6	7-1/2	6	29	820.4	1,493	503,610	1,844	668,350	-	-
82	2.08	11-1/8	12-1/2	17	6	7-1/2	6	29-3/4	862	1,574	568,320	1,952	754,640	-	-
84	2.13	11-1/8	12-1/2	17	6	7-1/2	6	30-7/16	904.5	1,659	639,650	2,064	849,740	-	-
86	2.18	11-1/8	12-1/2	17	6	7-1/2	6	31-3/16	948.1	1,748	718,600	2,183	955,010	-	-
88	2.23	11-1/8	12-1/2	17	6	7-1/2	6	31-15/16	992.7	1,842	805,280	2,308	1,070,600	-	-
90	2.28	11-7/8	13-1/4	18-1/4	6	8	6	32-5/8	1,038.3	2,048	903,200	2,547	1,199,900	-	-
92	2.33	11-7/8	13-1/4	18-1/4	6	8	6	33-3/8	1,085.0	2,150	1,003,950	2,683	1,338,260	-	-
94	2.38	11-7/8	13-1/4	18-1/4	6	8	6	34-1/16	1,132.7	2,256	1,119,400	2,825	1,488,200	-	-
96	2.43	11-7/8	13-1/4	18-1/4	6	8	6	34-13/16	1,181.4	2,263	1,238,750	2,869	1,648,600	-	-

${ }^{*} W R^{2}= \pm 10 \%$ in Air (inch squared lbs.)

| $\frac{\text { Diameters }}{8 "-34 "}$ | | M.W.R. |
| :--- | :--- | :--- |\quad| B.T.F. | |
| :--- | :--- |
| $36 "-60^{\prime \prime}$ | 0.33 |
| $62 "-96^{\prime \prime}$ | 0.30 |

Commercial Boat Propellers

Photo courtesy of Marine Transportation Services

Photo courtesy of Breaux Brothers

Photo courtesy of Breaux Brothers

\qquad

Maxima

0.63 E.A.R. - 3 Blade
0.836 E.A.R. - 4 Blade
Diameter range: 26" - 50"

For high horsepower, moderate speed crew supply, and passenger boats that require maximum thrust, the Maxima series propeller delivers efficient and durable performance. The blade design is wider than the standard to provide maximum thrust for applications that require it.

Heavy-duty blade thickness distribution makes the Maxima the most durable of the commercial offering.

Available with 3 or 4 blade design, in NiBrAl or Manganese Bronze alloys.

Trawler Specifications - (0.44 E.A.R.)											
DIAMETER		Hub Dimensions (INCHES)			Standard Taper Bore (INCHES)			$\begin{gathered} \text { MAXIMUM } \\ \text { BLADE WIDTH } \\ \text { (INCHES) } \end{gathered}$	Expanded Area per Blade (SQ. IN)	Approx. Net Weight (LBS.)	$\begin{gathered} \text { *WR }^{2} \\ \left(\mathrm{LBS} .-\mathbb{N}^{2}\right) \end{gathered}$
ZInches	M / M	$\begin{aligned} & \text { Aft } \\ & \text { End } \end{aligned}$	Forward End	Length	Minimum Bore	MAXImum Bore	Pilot Bore				
36	914	4-7/16	5-1/16	7	2-1/2	3-1/4	2-1/2	8-1/2	108.8	145	9,900
38	965	4-7/16	5-1/16	7	2-1/2	3-1/4	2-1/2	9	121.2	160	12,200
40	1016	4-7/16	5-1/16	7	2-1/2	3-1/4	2-1/2	9-1/2	134.4	187	15,800
42	1067	4-3/4	5-1/2	8	2-3/4	3-1/2	2-3/4	10	148.2	221	20,600
44	1118	4-3/4	5-1/2	8	2-3/4	3-1/2	2-3/4	10-3/8	162.6	248	25,400
46	1168	4-3/4	5-1/2	8	2-3/4	3-1/2	2-3/4	11	177.6	284	31,700
48	1219	6	6-3/4	9	3	4	3	11-3/8	193.6	322	39,300
50	1270	6	6-3/4	9	3	4	3	11-7/8	210.0	370	49,000
52	1321	6	6-3/4	9	3	4	3	12-3/8	227.4	402	57,500
54	1372	6-9/16	7-3/8	10-3/4	3-1/2	4-1/2	3-1/2	12-3/4	244.8	451	69,500
56	1422	6-9/16	7-3/8	10-3/4	3-1/2	4-1/2	3-1/2	13-1/4	273.2	496	82,000
58	1473	6-9/16	7-3/8	10-3/4	3-1/2	4-1/2	3-1/2	13-3/4	282.8	546	97,000
60	1524	6-9/16	7-3/8	10-3/4	3-1/2	4-1/2	3-1/2	14-1/4	302.2	587	112,000
62	1575	7-5/8	8-3/8	11-1/2	4	5	4	14-5/8	322.4	642	130,500
64	1626	7-5/8	8-3/8	11-1/2	4	5	4	15-1/8	343.9	693	150,000
66	1676	7-5/8	8-3/8	11-1/2	4	5	4	15-5/8	365.8	783	181,000
68	1727	8	9	13-1/4	4	5-1/2	4	16-1/8	388.0	887	217,800
70	1778	8	9	13-1/4	4	5-1/2	4	16-5/8	411.8	991	257,000
72	1828	8	9	13-1/4	4	5-1/2	4	17	434.9	1,110	302,000
$\begin{array}{rrr} * \text { *WR } \\ & \pm 10 \% \text { in Air (inch squared Ibs.)*WR }{ }^{2}= \pm 10 \% \text { in Air (inch squared Ibs.) } & \text { M.W.R. }=0.21 \end{array} \begin{array}{r} \text { B.T.F. }=32 "-34 \text { " dia. }=0.036 \\ 36 "-60 " \text { dia. }=0.038 \\ 62 "-72 " \text { dia. }=0.042 \end{array}$											

Kaplan Specifications - (0.56 E.A.R.)											
Diameter		Hub Dimensions (INCHES)			Standard Taper Bore (INCHES)			Maximum Blade Width (INCHES)	Expanded Area per Blade (SQ. IN)	Approx. Net Weight (LBS.)	$\begin{gathered} { }^{* W R}{ }^{2} \\ \left(\text { LBS. }-\mathbb{N N}^{2}\right) \end{gathered}$
Inches	M / M	$\begin{aligned} & \text { AFT } \\ & \text { End } \end{aligned}$	Forward End	Length	Minimum Bore	MAximum Bore	Pilot Bore				
35	889	4-3/4	5-1/2	7-1/2	2-1/2	3-1/2	2-1/2	10-9/16	135	117	6,650
39	991	5-1/16	5-13/16	8	2-3/4	3-3/4	2-3/4	11-3/4	167	154	11,300
43	1090	5-1/4	6	8-1/4	2-3/4	3-3/4	2-3/4	12-7/8	203	196	18,240
45	1140	6	6-3/4	10	3	4	3	13-9/16	222	246	23,220
47	1190	6	6-3/4	10	3	4	3	14-3/16	243	269	28,650
51	1300	6-9/16	7-3/8	10-3/4	3-1/2	4-1/2	3-1/2	15-3/8	286	341	43,110
53	1350	6-9/16	7-3/8	10-3/4	3-1/2	4-1/2	3-1/2	15-7/8	309	371	51,920
55	1400	7-5/8	8-3/8	11-1/2	4	5	4	16-5/8	333	445	63,600
59	1500	7-5/8	8-3/8	12	4	5	4	17-3/4	383	521	89,230
63	1600	9	10	13-1/4	4	6	4	19-3/16	436	701	126,330
67	1700	10-1/2	11-3/4	14-1/2	5	7	5	20-5/8	494	907	175,980
71	1800	10-1/2	11-3/4	14-1/2	5	7	5	21-11/16	554	1011	231,530
75	1905	10-1/2	11-3/4	14-1/2	5	7	5	22-3/4	618	1128	300,500
79	2006	11-1/8	12-1/2	17	6	7-1/2	6	24	687	1,350	391,360
83	2108	11-1/8	12-1/2	17	6	7-1/2	6	25-1/16	758	1,493	495,870
87	2209	11-1/8	12-1/2	17	6	7-1/2	6	26-1/8	832	1,650	621,740
91	2311	11-7/8	13-1/4	18-1/4	6-1/2	8	6-1/2	27-7/16	911	1,915	780,850
95	2413	11-7/8	13-1/4	18-1/4	6-1/2	8	6-1/2	28-1/2	993	2,104	961,860

Greater area ratios available and quoted upon request. For use in commercial Kort Nozzle applications, resulting in $25-50 \%$ increased thrust compared to an open wheel, on low speed trawlers, draggers, and harbor tugs.

Maxima Specifications									Maxima 3 - (0.63)		Maxima 4 - (0.836)	
			b Dimensio (INCHES)			ARD Taper (INCHES)		Expanded Area per	Approx. Net		Approx. Net	
Inches	M / M	$\begin{aligned} & \text { Aft } \\ & \text { End } \end{aligned}$	Forward End	Length	Minimum Bore	Maximum BORE	Pilot Bore	$\begin{aligned} & \text { BLADE } \\ & (\mathrm{SQ} . \mathrm{IN}) \end{aligned}$	Weight (LBS.)	*WR ${ }^{2}$	Weight (LBS.)	$\begin{gathered} { }^{* W R}{ }^{2} \\ \left(\text { LBS. }-N^{2}\right) \end{gathered}$
32	813	4-1/4	4-7/8	9	2-1/4	3	2-1/4	166	107	5,672	133	7,525
34	864	4-5/8	5-3/8	10-1/2	2-1/2	3-1/2	2-1/2	188	130	7,716	162	10,228
36	914	4-5/8	5-3/8	10-1/2	2-1/2	3-1/2	2-1/2	210	149	10,200	187	13,537
38	965	4-7/8	5-5/8	11-1/4	2-3/4	3-3/4	2-3/4	234	174	13,354	219	17,726
40	1016	5-1/8	5-7/8	12	3	4	3	260	202	17,248	254	22,896
42	1067	5-1/8	5-7/8	12	3	4	3	286	229	21,917	289	29,117
44	1118	5-1/8	5-7/8	12	3	4	3	314	258	27,560	328	36,635
46	1168	5-1/8	5-7/8	12	3	4	3	343	290	34,324	371	45,646
48	1219	6	6-7/8	11-1/4	3-1/2	4-1/2	3-1/2	374	343	42,804	433	56,850
50	1270	6	6-7/8	11-1/4	3-1/2	4-1/2	3-1/2	406	381	52,323	484	69,532

[^1]The Standard series of propellers are designed to function in a non-cavitating to a partially cavitating environment. Cavitation is a water vapor cavity which forms on the surface of the hub or blade as a result of low pressure due to water flow over the blade surface. Stable cavitation is quite common on smaller performance propellers and often results in no adverse effects. Unstable cavitation can result in vibration and noise problems, or in extreme conditions, blade surface erosion. Cavitation is not necessarily bad, but needs to be controlled to avoid problems. A primary effort in sizing is to qualify an application as to the amount of blade loading (pressure in pounds per square inch), and what propeller area ratio is required.

STANDARDS

PROPELLER SERIES	EXPANDED AREA RATIO	BLADE NUMBER	SIZE RANGE, DIAMETER
DJX	0.61	3	See price list for available sizes.
DQX	0.735	4	See price list for available sizes.
DQX	0.81	4	See price list for available sizes.
DYNA-JET	0.56	3	19" - 46"
DYNA-QUAD	0.69	4	19"-46"
M-500	0.86	5	22" - 46"
DQ SPECIAL	0.76 to 0.91	4	32" - 56"
DURA-QUAD	0.76	4	24"-36"
PAC-MASTER	0.69	4	20" - 30"
MACHINE PITCH	0.51	3	19"-60"
MACHINE PITCH	0.47	3	62" - 96"
MAXIMA 3	0.63	3	26"-50"
MAXIMA 4	0.836	4	26"-50"
WORK HORSE	0.71	4	24" - 60"
WORK HORSE	0.622	4	62" - 96"
WORK HORSE	0.8875	5	30"-60"
TRAWLER	0.44	4	40"-72"
KAPLAN	56, 0.76, Custom	4	35" - 95"

Too much blade area can reduce the efficiency of a propulsion system because the more the area, the more drag. There are ranges of loading that will predicate which of the Michigan Propeller configurations could be used. Typically, this ranges from the 3 blade on moderately sized boats through 40 '), 4 blade on mid-range to larger ($40^{\prime}-100$ '), with 5 blade coming into play where there is extreme blade loading and compromise of diameter. There may be over-riding considerations in selecting a 4 or 5 blade over a 3 blade, such as maximizing vibration reduction.
On moderately sized boats, generally speaking, if optimal diameter is possible with adequate tip clearance, a 3 blade will yield the best top end speed.

However, the choice of a 4 blade may provide similar cruising speed, and may offer a more comfortable ride, with less vibration. With an increase in blade number, the "blade rate frequency" increases for a given shaft RPM. In general, the higher the blade rate frequency, the less problematic vibration is. On the larger, heavier applications, with higher gear ratios, the loading requires greater area ratios, and 4 or 5 bladed propellers have a better speed potential. Properly matching propeller area ratio to an application will optimize propulsion and reduce the possibility of destructive cavitation erosion.

SPECIFICATIONS

High Skewed Blade Shape, Standard Thickness
High Skewed Blade Shape, Standard Thickness
High Skewed Blade Shape, Standard Thickness
Skewed Blade Shape, Heavy Duty Thickness
Skewed Blade Shape, Stainless Steel, Heavy Duty Thickness
Symmetric Blade Shape, Standard and Heavy Duty Thickness
Symmetric Blade Shape, Standard and Heavy Duty Thickness
Symmetric Blade Shape, Heavy Duty Thickness
Symmetric Blade Shape, Heavy Duty Thickness
Semi-Elliptical Blade Shape, Standard and Heavy Duty Thickness
Semi-Elliptical Blade Shape, Standard and Heavy Duty Thickness
Semi-Elliptical Blade Shape, Standard and Heavy Duty Thickness
Elliptical Blade Shape, Standard Thickness
Kaplan Shape, Standard Thickness

From design to final finish, Michigan Propellers has complete pattern making capacity, in wood, metal and plastic.

Michigan Propellers pattern vaults are unsurpassed in the variety of available propeller patterns.

Melt temperatures are critical, and tightly controlled on the special alloys used in Michigan Propellers foundry.

Whatever Your Particular Demands, Michigan Propellers Can Fit You With The Right Propeller.

Michigan Wheel Corporation has one goal - to produce the finest propellers possible, while maintaining the highest standards of quality.

Michigan Propeller standard series offerings are available, affordable, and readily repairable. Stocking distributors throughout North America and Europe carry a wide variety of diameter and pitch ranges. For immediate availability worldwide, Michigan Propellers provides a highly successful "field needs" service at no charge, which will locate a particular description of propeller in distributors' stock to meet a customer's needs. With lead time to manufacture, Michigan Wheel Corporation is experienced in handling custom orders and in export.

The use of "no bake" sand in molding larger Michigan Propeller patterns results in accurate castings.

Standard series propellers are manufactured on a volume production basis, through which are appreciated certain economies. With this volume, Michigan Propellers offers excellent value on a price/function ratio. Even with the volume, each propeller is CNC machined, or hand-crafted by the most experienced craftsmen in the world.

Authorized repair facilities throughout North America, Europe and other areas of the world have worked with Michigan Propeller product typically for decades. Such repair facilities are experienced and proficient in repair maintenance on our standard series propellers. In your maintenance or reconditioning requirements, be sure that the shop you use is Michigan certified; contact Michigan Wheel Corporation for the location closest to you.

Each hand-crafted or machine finished propeller blade is templated, and each propeller is checked for pitch, spacing and track in process, to insure accuracy of the final product. Balancing equipment is located and used in each step of the finishing process.

A variety of machining equipment operated by skilled machinists assures accurate propeller bores, SAE and metric.

High speed machining

In process and final inspection with gauges, pitchometer, and computerized inspection (MRI), equipment insures production accuracy.

Computer generated carton labels, keyed off the part number, accurately identify critical information on each propeller that is packed.

	1) (1)	
No.	TERM	DEFINITION
1.	Diameter	The diameter of the imaginary circle scribed by the blade tips as the propeller rotates.
2.	Radius	The distance from the axis of rotation to the blade tip. The radius multiplied by two is equal to the diameter.
3.	Blade Face	Pressure Side, Pitch Side. Aft side of the blade (surface facing the stern).
4.	Blade Back	Suction Side. Forward side of the blade (surface facing the bow).
5.	Leading Edge	The edge of the propeller blade adjacent to the forward end of the hub. When viewing the propeller from astern, this edge is furthest away. The leading edge leads into the flow when providing forward thrust.
6.	Trailing Edge	The edge of the propeller adjacent to the aft end of the hub. When viewing the propeller from astern, this edge is closest. The trailing edge retreats from the flow when providing forward thrust.
7.	Blade Number	Equal to the number of blades on the propeller.
8.	Blade Tip	Maximum reach of the blade from the center of the hub. Separates the leading and trailing edges.
9.	Hub	Solid cylinder located at the center of the propeller. Bored to accommodate the engine shaft. Hub shapes include cylindrical, conical, radius, \& barreled.
10.	Blade Root	Fillet area. The region of transition from the blade surfaces and edges to the hub periphery. The area where the blade attaches to the hub.
11.	Rotation (Right hand shown here)	When viewed from the stern (facing forward):Right-hand propellers rotate clockwise to provide forward thrust.Left-hand propellers rotate counter-clockwise to provide forward thrust.
12.	Pitch	The linear distance that a propeller would move in one revolution with no slippage.
13.	Cylindrical Section	A cross section of a blade cut by a circular cylinder whose centerline is the propeller axis of rotation.
14.	Pitch Reference Line	Reference line used to establish the geometric pitch angle for the section. This line may pass through the leading and trailing edges of the section and may be equivalent to the chord line.
15.*	Geometric Pitch Angle, a	The angle between the pitch reference line and a line perpendicular to the propeller axis of rotation.
16.*	Controllable Pitch Propeller	The propeller blades mount separately on the hub, each on an axis of rotation, allowing a change of pitch in the blades and thus the propeller.
17.*	Fixed Pitch Propeller	The propeller blades are permanently mounted and do not allow a change in the propeller pitch.
18.*	Constant Pitch Propeller	The propeller blades have the same value of pitch from root to tip and from leading edge to trailing edge.
19.*	Variable Pitch Propeller	The propeller blades have sections designed with varying values of local face pitch on the pitch side or blade face.
20.*	Rake	The fore or aft slant of a blade with respect to a line perpendicular to the propeller axis of rotation.
20a.	Aft Rake	Positive Rake. Blade slant towards aft end of hub.
20b.	Forward Rake	Negative Rake. Blade slant towards forward end of hub.
21.	Track	The absolute difference of the actual individual blade rake distributions to the other blade rake distributions. Always a positive value and represents the spread between individual blade rake distributions.
22.*	Skew	The transverse sweeping of a blade such that viewing the blades from fore or aft shows an asymmetrical shape.
22a.	Aft Skew	Positive Skew. Blade sweep in direction opposite of rotation.
22b.	Forward Skew	Negative Skew. Blade sweep in same direction as rotation.
23.	Cup	Small radius of curvature located on the trailing edge of blade.

7. Blade Number = 4

Forward
(Bow)

Inboard Propeller Installation Procedures

1. Push propeller snugly onto shaft taper WITHOUT key in either keyway (propeller or shaft).
2. Make sure the propeller is snug and there is no side to side movement by gently moving propeller back and forth.
3. Make a line on the shaft with a non-graphite marker at the forward end of the propeller where it stops up against the shaft taper.
4. Remove Propeller.
5. Put key into keyway on shaft taper with radiused or chamfered corners (down) in shaft keyway (if propeller shaft keyway has radiused corners).
6. Put propeller onto shaft taper.
7. Check to see that the propeller moves back to the forward line made in Step 3. If it does, skip down to Step 8. If not, perform the following:
a. Remove propeller from shaft.
b. Place a file on a flat surface area or work bench.
c. Run opposite end of chamfered key back and forth over file (to remove any burrs) with a downward pressure on key until side being filed is clean.
d. Install cleaned key in shaft keyway with chamfered corner side down in shaft (the cleaned, filed side up in keyway).
e. Replace the propeller on the shaft and fit snugly on taper. Check to see if it reaches the line made as in Step 7. If it does not line up then repeat "Steps a. through e.".

NOTE: A vise can be used to hold key and then filed, but care must be taken not to tighten too much, causing burrs and irregularities on key.
8. When propeller hub moves to correct position, install propeller nut on shaft and torque to seat the propeller. Install the torque jam nut also, if your shaft is so equipped.
9. Install cotter pin at end of the shaft.

APPROVED S．A．E．STANDARD DIMENSIONS FOR SHAFTS $3 / 4$ TO 3 INCHES IN DIAMETER

	\times	※\％\％\％		发甡器登
		ペプロ		－rざざ
		ごがす	む゙パーナ゙ざざざ	ざざ～べ
	$\stackrel{\circ}{*}$			
	5	がずー	－ざ べざざさ	ล゙べざヘ
	$\frac{\mathrm{E}}{\frac{5}{2}}$	－\％	－\％\％\％\％\％\％\％\％\％	ボざざさ
$\begin{aligned} & \stackrel{\circ}{1} \\ & \text { 온 } \\ & \frac{c}{4} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	言 ${ }^{\text {a }}$			$0^{8} 0^{8} 0^{8}$
	z		－\％	
				ババハ
		プำ	バががペーざ	
$\begin{aligned} & \text { 旁 } \\ & \text { ة } \\ & 5 \end{aligned}$	\pm	パ－－	－－¢ \％\％\％\％	がっ゚さざ
	，	－\％$\square^{\text {¢ }}$		
		¢゚ざさ		
$\begin{aligned} & \stackrel{\circ}{\stackrel{\rightharpoonup}{0}_{4}^{4}} \\ & \stackrel{F}{4} \end{aligned}$	무	$\stackrel{m}{\sim} \times$	の	の的等等
	\％	N゙ロ゙	－「ござざ	ざざさ～＊゙
		\％\％\％		
	$\stackrel{\times}{ \pm}$		Nooq on du	
	$\underline{5}$		00000	
	$\stackrel{\text { E }}{2}$	χ^{2}		
	$\stackrel{\times}{ \pm}$			適以
	$\underline{5}$		000000	
	$\stackrel{\text { E }}{2}$	がざ		
		～${ }_{\text {co }}^{\text {c }}$		
	$\stackrel{\times}{ \pm}$	\％\％	¢⿹\zh26灬ono	
	E	むため゙웅		
言皆㝘		ぶざー		

DIMENSIONS OF SHAFTS FROM 3¼ TO 8 INCHES IN DIAMETER																													
Nom Shaft Dia．	$\begin{aligned} & \text { Diameter } \\ & \text { Small End } \end{aligned}$$\begin{array}{r} \text { Small } \\ B \\ \hline \end{array}$		Taper Length C	Keyway Width D			KeywaySide Depth aE			Keyway Fillet Radius R	Thread c F		$\substack{\text { End of } \\ \text { Taper to } \\ \text { End } \\ \text { of Thd }}$ G		Undercut		\qquad	Lgth．of Pin end M \qquad	Cotter－Pin Hole		Cotter－Pin，Q		Nuts d			Sleeve Dia．e U		Clear－ ancez	Keyway Length$\mathrm{X}$$\qquad$
A	Min．	Max		Nom	Min	Max	Nom	Min	Max		Dia．	Tpi			J	K			N	$\underset{\mathbf{P}}{(\text { drill) }}$	Nom dia．	Length	Size	Plain thick，T	$\begin{gathered} \text { Jamb } \\ \text { thick, } \mathrm{W} \end{gathered}$	Min	Max		
$31 / 4$	2.663	2.665	93／6	3／4	0.7485	0.750	5／16	0.311	0.314	1／8	$21 / 2$	4	43／8	51／8	21／8	3／8	21／8	3／4	$4^{37 / 64}$	3／8	3／8	3	21／2－4	$21 / 2$	11／2	3.870	3.872	3／8	81／2
$31 / 2$	2.866	2.868	101／8	7／8	0.8735	0.875	5／16	0.310	0.313	1／8	21／2	4	43／8	51／8	21／8	$3 / 8$	21／8	$3 / 4$	$4^{37 / 64}$	3／8	3／8	3	$2 \sqrt{2}-4$	$21 / 2$	11／2	4.120	4.122	3／8	91／4
33／4	3.069	3.071	10\％${ }^{\text {d }}$	7／8	0.8735	0.875	5／18	0.310	0.313	1／8	23／4	4	43／4	51／2	23／8	3／8	23／6	$3 / 4$	$4^{61 / 64}$	3／8	3／8		23／4－4	$23 / 4$	15／8	4.369	4.371	3／8	10
4	3.272	3.274	115／8	1	0.9985	1.000	5／18	0.309	0.312	1／8	3	4	51／8	57／8	21／2	3／8	21／2	3／4	52／64	3／8	3／8	$31 / 2$	3－4	3	$13 / 4$	4.619	4.621	3／8	101／2
$41 / 2$	3.827	3.829	103／4	11／8	1.123	1.125	3／8	0.373	0.376	5／32	$31 / 4$	4	5\％／8	$63 / 8$	23／4	3／8	23／4	3／4	－	－	－	－	$3^{1 / 4-4}$	$31 / 4$	17／8	5.243	5.245	1／2	95／8
5	4.249	4.251	12	$11 / 4$	1.248	1.250	7／16	0.434	0.437	3／16	33／4	4	63／8	71／8	31／4	3／8	$31 / 4$	$3 / 4$	－	－	－	－	$3{ }^{3 / 4} 4$	$33 / 4$	21／8	5.993	5.995	1／2	107／8
$51 / 2$	4.671	4.673	$13^{1 / 4}$	11／4	1.248	1.250	7／16	0.435	0.438	3／16	4	4	63／4	$73 / 4$	31／2	1／2	31／2	1	－	－	－	－	4－4	${ }_{4}$	21／4	6.492	6.494	1／2	121／8
＊ 6	4.791	4.793	141／2	13／6	1.373	1.375	1／2	0.493	0.496	7／82	41／4	4	71／2	$81 / 2$	37／8	1／2	37／8	1	－	－	－	－	41／4－4	41／4	21／4	6.992	6.994	1／2	131／4
＊61／2	5.187	5.189	153／4	13／6	1.373	1.375	1／2	0.494	0.497	7／32	41／2	4	81／4	$91 / 4$	43／8	1／2	43／8	1	－	－	－	－		91／2	21／2	7.492	7.494	1／2	143／8
${ }^{7} 7$	5.582	5.584	17	11／2	1.498	1.500	\％／1／6	0.555	0.558	1／4	4／2 5	4	814 9	10	47／8	1／2	47／8	1	－	－	－	－	$41 / 2-4$ $5-4$	$9 / 2$ 5	$2^{3 / 4}$	8.117	8.120	1／2	155／8
${ }^{*} 71 / 2$	5.978	5.980	181／4	11／2	1.498	1.500	9／6	0.556	0.559	1／4	51／2		93／8	103／8	51／8	1／2	$51 / 8$	1	－	－	－	－	$51 / 2$ $51 / 2-4$	$51 / 2$	3	8.616	8.619	1／2	167／8
＊ 8	6.374	6.376	191／2	13／4	1.748	1.750	9／6	0.553	0.556	1／4	53／4	4	$93 / 4$	103／4	5\％／8	1／2	53／8	1	－	－	－	－	53／4－4	$53 / 4$	$31 / 8$	9.240	9.243	1／2	181／8

		$\stackrel{\times}{\times}$	000000000000000000000000
		$\stackrel{5}{\Sigma}$	000000000000000000000000
		Ė	
		$\begin{aligned} & \dot{x} \\ & \stackrel{\rightharpoonup}{\Sigma} \end{aligned}$	
		$\frac{\dot{E}}{\Sigma}$	
		¢	
		$\stackrel{\dot{x}}{\stackrel{x}{\Sigma}}$	
	$$	$\stackrel{5}{\Sigma}$	
		寅㐫	

[^0]: *WR ${ }^{2}= \pm 10 \%$ in Air (inch squared Ibs.)
 M.W.R. $=0.37$
 B.T.F. $=0.046$

[^1]: ${ }^{*} W R^{2}= \pm 10 \%$ in Air (inch squared lbs.)

